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ABSTRACT

A family of self-similar fields provides the two parameters required to characterize

the full range of high- and low-triaxiality crack tip states. The two parameters, J and Q,

have distinct roles: J sets the size scale of the process zone over which large stresses and

strains develop, while Q scales the near-tip stress distribution relative to a high triaxiality

reference stress state. An immediate consequence of the theory is this: it is the toughness

values over a range of crack tip constraint that fully characterize the material's fracture

resistance. It is shown that Q provides a common scale for interpreting cleavage fracture

and ductile tearing data thus allowing both failure modes to be incorporated in a single

toughness locus.

The evolution of Q, as plasticity progresses from small scale yielding to fully yielded

conditions, has been quantified for several crack geometries and for a wide range of material

strain hardening properties. An indicator of the robustness of the J-Q fields is introduced;

Q as a field parameter and as a pointwise measure of stress level is discussed.
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1. INTRODUCTION

A two-parameter fracture theory can be motivated by considering the progression of
plastic states as loading on a cracked body is increased. At low loads, the near-tip stresses

and deformations evolve according to a self-similar field, scaled by Rice's J-integral [1].
This field, characterized by a high level of stress triaxiality, also describes the evolution of
the near-tip stresses and deformations in certain crack geometries as plastic flow progresses
from well-contained yielding to large scale yielding. While this high triaxiality field is
only one of many possible states that can exist under fully yielded conditions, it is the
only field that has received careful study until recently. When the high triaxiality field

(Hutchinson (2], Rice and Rosengren [3), Rice and Johnson [4], McMeeking [5)) prevails
over distances comparable to several crack tip openings, J alone sets the near-tip stress
level and the size scale of the zone of high stresses and deformations. Considerable efforts
have been directed to establishing, for different crack geometries, the remote deformation
levels which ensure that the near-tip behavior is uniquely measured by J (McMeeking and

Parks [6], Shih and German [7]). The end result is a framework, based on J and the high
triaxiality crack tip field, for correlating crack growth over a range of plane strain yielding
conditions (see review articles by Hutchinson (8], Parks [9]) and for relating critical values
of the macroscopic parameter JiC to fracture mechanisms operative on the microscale (see
review article by Ritchie and Thompson [10]).

Arguments that a single parameter might not suffice to characterize the near-tip states
of fully yielded crack geometries have been raised by McClintock [11]. He noted that
non-hardening plane strain crack tip fields of fully yielded bodies are not unique but
exhibit levels of stress triaxiality that depend on crack geometry. Though high stress
triaxiality is maintained in geometries involving predominantly bending on the uncracked

ligament, the level of crack tip stress triaxiality in geometries dominated by tension loads
generally decreases as yielding progresses into the fully plastic state (see Refs 6 and 7).

Indeed, experimentally measured J-resistance curves for center-cracked panels exhibit
significantly higher slopes than those for compact specimens (Begley and Landes [12]).

Undoubtedly, there is merit to the latter point of view and it is the purpose of this
paper to show that this viewpoint can be properly reconciled by a two-parameter J - Q

theory proposed by O'Dowd and Shih [13,14] and Shih et al. [15,16]. They showed,
through full-field finite element calculations, that the J - Q fields dominate over physically

significant size scales, i.e. they represent the environment in which the ductile and brittle
failure mechanisms are operative. An approach based on higher-order asymptotics has
been suggested by Li and Wang [17] and pursued by Sharma and Aravas [18] and Chao
et al. [19]. Extending the analysis in Refs 17 and 18, Xia et al. [20) have obtained up to



five terms in the asymptotic series and showed that the collective behavior of the series is

consistent with the J - Q field.

An alternative two-parameter approach based on J and the elastic T-stress has been

advocated by Beteg6n and Hancock [21], Al-Ani and Hancock [22], Du and Hancock [23],

Parks [24], Hancock et al. [25] and Wang [26,27]. Under circumstances where it is applica-

ble, the J - T theory can be shown to be equivalent to the J - Q theory. This is discussed

in the section on small scale yielding. The toughness scaling approach of Dodds et al. [29]

can also be shown to be consistent with the J - Q theory (see Kirk et al. [30]).

2. J-Q THEORY

Consider a cracked body of characteristic dimension L loaded remotely by a stress

denoted by a". The scale of crack tip deformation is measured by J/olo where ao is

the material's tensile yield stress. It can be shown from dimensional grounds that when

L > J/lo all near-tip fields are members of a single family of crack tip fields. Each member

field is characterized by its level of deformation as measured by J/uo and its level of crack

tip stress triaxiality, as measured by Q, which also identifies that field as a particular

member of the family. For example, the self-similar solution of Rice and Johnson [4] and

McMeeking [5] or the HRR field (Refs 2 and 3) can be taken as the Q = 0 member field.

In short, the Q-family of fields provides the proper characterizing parameters for the full

range of near-tip fracture states.

The weak coupling between deformation and stress triaxiality in a plastically deform-

ing material provides another argument in favor of a two parameter description of near

tip states. Since plastic flow is incompressible, the superposition of a purely hydrostatic

stress state induces only an elastic volume change. Consider a plastically deforming ma-

terial element in the forward sector of a crack as depicted in Fig. 1. We can superpose a

hydrostatic stress Qo0 with little or no effect on the deformation state. It follows that near

tip deformation and stress triaxiality cannot be scaled by a single parameter such as J.

A second parameter is required to quantify the level of crack tip stress triaxiality. Clearly

this argument does not apply to the back sector since traction free conditions must be

satisfied on the crack faces. However this is of no physical consequence since the fracture

processes occur in the forward sector, which is therefore the region of interest.

A size scale must enter into the fracture description. We focus on fields ahead of

the crack that are relevant on the scale of the crack opening displacement 6 t, or J/ao,

representing the environment in which the failure mechanisms are operative.



Back Sector Forward Sector

Figure 1. Schematic illustrating the necessity for a hydrostatic stress parameter and a de-

formation parameter to characterize the full range of near tip states in the forward

sector.

2.1 Q-Family of Fields - MBL formulation

It proves convenient to construct the Q-family of fields using a modified boundary

layer (1\11L) formulation in which the remote tractions are given by the first two terms of

the small- displacement-gradient linear elastic solution (Williams [31]),

a =K 1 f()+ Tblibli. (2.1)

Here 6i, is the Kronecker delta; r and 0 are polar coordinates centered at the crack tip

with 6 = 0 corresponding to a line ahead of the crack as shown in the insert to Fig. 2.

Fields of different crack tip stress triaxialities can be induced by applying different

levels of T/uo. From dimensional considerations, these fields can be organized into a family

of crack tip fields of the form:

a = nm r , \0 T (2.2)

where J is Rice's J.-integral [1]. That is, the load parameter T/oo provides a conve-

nient means to investigate and parameterize specimen geometry effects on near-tip stress

triaxiality under conditions of well-contained yielding. Indeed, such studies have been

carried out by Beteg6n and Hancock [21], Bilby et a!. [321 and Harlin and Willis (33].

Nevertheless, the result in Equation 2.2 cannot have general applicability since the elastic

3



solution (Eq 2.1) upon which the T-stress is defined, is an asymptotic condition which is

increasingly violated as plastic flow progresses beyond well-contained yielding.

Recognizing the above limitation O'Dowd and Shih [13,14], henceforth referred to as

OS, identified members of the plane strain family of fields by the parameter Q which arises

naturally in the plasticity analysis. OS write:

r Ir J (rai=•ofi r 9 ,;Q , ei,=eogij ,0; I, ui-hi ( , 0;Q) . (2.3)

The additional dependence of fij, gij and hi on dimensionless combinations of material

parameters is understood. The form in Equation 2.3 constitutes a one-parameter family

of self-similar solutions, or in short a Q-family of solutions. The annular zone over which

Equation 2.3 accurately quantifies the actual field is called the J - Q annulus. Represen-

tative distributions of the Q family of fields are presented in Fig. 4 of Ref 1 and Fig. 1 of

Ref 2.

2.2 Difference Field and Near-Tip Stress Triaxiality

Using the modified boundary layer formulation, and considering a piecewise power

law hardening material, OS generated the full range of small scale yielding plane strain

solutions, designated by (oii)ssy. OS considered the difference field defined by

('i,)diff = (o't)SSY - (O'iO)HRR, (2.4)

where (aij)HRR is the HRR field. They systematically investigated the difference field

within the forward sector, 101 < 7r/2, of the annulus J/oo < r < 5J/uo, since this zone

encompasses the microstructurally significant length scales for both brittle and ductile

fracture (see Ref 10). Remarkably, the difference field in the forward sector displayed

minimal dependence on r. Noting this behavior, OS expressed the difference field within

the forward sector in the form

(Ui,)diff = Qo0 A0), (2.5)

where the angular functions &ii are normalized by requiring &99(0 = 0) to equal unity.

Moreover, the angular functions within the forward sector exhibit these features: U"r

&00 = constant and 1&r,9 << J&ael (see Figs. 3, 4 and 5 in Ref 13).

Thus the difference field within the sector, 101 < 7r/2 and J/no < r < 5J/ao, corre-

spond effectively to a spatially uniform hydrostatic stress state of adjustable magnitude,

i.e. (o'ic)diff = Qaotij. Therefore, Q defined by

Q= Oee - (aOO)HRR at 6 = 0, r = 2J/ 0  (2.6)

4



is a natural measure of near-tip stress triaxiality, or crack tip constraint, relative to a high

triaxiality reference stress state. In words, Q is the difference between the actual hoop

stress and the corresponding HRR stress component, the difference being normalized by

ao. For definiteness we have evaluated Q at r = 2J/no, however we point out that Q is

effectively independent of distance. The distance chosen for the definition of Q lies just

outside the finite strain blunting zone so that Q from a small or finite strain analysis should

be near!y the same.

CS also considered the difference field whereby the standard plan, strain small scale

yielding solution (0ij)SSY;T=O, which is driven by K alone, is the reference solution, i.e.

(0.ij)diff = (O ij)SSY - (0ij)SSY;T=o. (2.7)

In this case the difference field in the forward sector matches a spatially uniform hydrostatic
stress state even more closely. Thus an alternative definition of Q is

Q =a8 - (a88)SSY;T=o at 0 = 0, r = 2J/or0 . (2.8)

A definition of Q consistent with its interpretation as a triaxiality parameter is,
r - (Urn )SsY;T=O

Q, at 0=0, r=2J/uo, (2.9)

where arn is the hydrostatic stress. We have calculated Q based on the hoop stress (Equa-

tion 2.8) and the mean stress (Equation 2.9) for the full range of T-stresses and finite

width geometries. We have four 3 that the difference between Q and Qn is always less

than 0.1. While the values of Q presented in this paper are calculated from the hoop stress

via Equation 2.8 it is clear from the above that these Q values can also be used to calculate

the corresponding hydrostatic stress levels.

2.3 Difference Field and Higher-Order Terms of the Asymptotic Series

The connection between the difference field and higher-order terms of th. asN .ptotic

series can be understood in the context of the MBL formulation. Here the stress neld obey

the functional form

rij = of1 ij ( 1; Q , (2.10)

which also should apply to finite-width crack geometries as long as the characteristic crack

dimension L is sufficiently large compared to J/0o. Now, if one assumes a product de-

pendence on the first argument in Equation 2.10 and works within deformation plasticity

theory and an elastic power-law hardening material, then one obtains a series in r/ (J/no):
/ j )1/(n+l)

i= O = Oro ij( 9;n) + second order term + higher order terms (2.11)aeOooronr y

Difference Field
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where co is a reference strain, a a material constant (for a piecewise power-law material

a = 1) and I,, is an integration constant. By definition, the asymptotic series beyond the

first term is equivalent to the difference field since (see previous section)

ai = (O'ij)HRR + Difference Field. (2.12)

The HRR field and the second-order term provides only a two-term approximation to the

solution for the MBL problem and this point appears not always to be understood.

The higher-order asymptotic analysis of Refs 17 and 18 has been extended by Xia,

Wang and Shih [201. They have obtained a five term expansion for the series in Equa-

tion 2.11 for n = 3 and four term expansions for n = 5,7 and 10. Furthermore, they

have successfully matched the four term series to the radial and angular variations of the

difference field given in Fig. 3 and Fig. 5 in Ref 13 for an n = 10 material. Indeed in

the forward sector 101 < 7r/2, the collective behavior of the the second, third and fourth

order terms is effectively equivalent to a spatially uniform hydrostatic stress state. This

observation together with the discussion of the previous section supports the simpler form

for the near-tip fields:

(rij = (Gij)HRR + Qoo ,Oj, 101 <• 7r/2. (2.13)

Furthermore, it may be noted that an admissible range of stress states for an elastic-

perfectly plastic material can be written in the form

a1ij = (oij)Prandtl + Qo 6,ij , 191 _ 7r/4, (2.14)

Difference Field

where (O'ij)Prndtl designates the Prandtl slip-line solution and again the difference field

corresponds simply to a uniform hydrostatic stress state scaled by Q (see Refs 23 and 14).

2.4 Variation of Q with Distance

Because Q scales the difference field relative to a reference stress state, it provides

a sensitive measure of the evolution of near-tip stress triaxiality in finite width cracked

bodies. It also can be used to detect changes in the stress triaxiality that deviates from

the pattern that develops under MBL loadings. For this purpose, we consider Q(f) defined

by
COOe(f) - (cree(f)jSSY;T=O

QM = - at 0 = 0 (2.15)

where f = r/(J/ao). Note that (aoe)SSY;T=O is chosen as the reference field.

6



The mean gradient of Q over 1 < f <5,

Q Q( =5) QV=1) (2.16)

4

can be used to monitor changes in the spatial pattern of the stress triaxiality ahead of the

crack that do not conform to a spatially uniform hydrostatic stress field. In other words,

Q' provides a measure of the robustness of the J - Q fields for the application of interest.

If JQJ < 0.1 then the difference field is effectively constant over 1 < F < 5. If VQ'I is much

larger than 0.1 then the variation of the difference field over the interval 1 < f < 5 can

be comparable to a0. In the latter case, Q provides only a pointwise measure of the stress

level-at the distance 2J/ao-ahead of the crack tip.

2.5 Reference Field Distributions

Table 1 provides the reference field distributions for a broad range of n values. For

completeness we have included the hoop stress distributions according to the HRR singu-

larity and the small scale yielding solutions for small strain and finite strain (piecewise-
power-law hardening material; E/ao = 500, v = 0.3). Figure 2 presents the hoop stress

and mean stress reference fields established by the MBL formulation with T = 0. The

original studies of OS were based on a finite strain formulation to ensure a full description
of the near-tip states. Our subsequent studies have shown that small and finite strain

analyses provide essentially identical results over the region of interest 1 < f < 5. This

can also be seen by comparing the finite strain and small strain distributions in Fig. 2.

Two reference fields have been proposed,, (uee)HRR and (0ee)SSY;T=0. Our numerical

investigations of different crack geometries show that, when the small scale yielding solution

is chosen as the reference state, the difference fields correspond more closely to a uniform

hydrostatic stress state over a greater range of plastic deformation. However, the choice

of reference distribution used in the definition of Q remains a matter of convenience. We

emphasize that once a choice is made, it must be applied consistently throughout the

analysis. We recommend that Equation 2.8 be used as the standard definition for Q with

the small strain solution as the reference field. Having a standard definition facilitates the

comparison of solutions obtained by different investigators and the tabulation of a handbook

of Q solutions.

While we have limited our discussion to a piecewise power-law hardening material,

the J - Q theory is independent of the form of the material's constitutive relation. Thus

(oaee)ssY;T=0 can be evaluated for an actual stress-strain relation. Of course, for consistency

the analyses in the fracture application should also use the same stress-strain relation.

7



r/(J/ao) HRR Small Finite
Strain Strain

n 3 1 5.99 5.46 5.95
2 5.04 4.53 4.72
3 4.55 4.06 4.19
4 4.24 3.76 3.85
5 4.01 3.53 3.61

1 1 4.77 4.42 4.83
2 4.25 3.90 4.06
3 3.97 3.63 3.73
4 3.79 3.44 3.52
5 3.65 3.29 3.36

n = 10 1 3.83 3.57 3.79
2 3.59 3.35 3.52
3 3.46 3.22 3.33
4 3.38 3.12 3.20
5 3.31 3.03 3.11

n = 20 1 3.37 3.21 3.06
2 3.26 3.09 3.22
3 3.20 3.01 3.10
4 3.15 2.95 3.02
5 3.12 2.89 2.96

n =0 1 - 2.83 2.49
2 - 2.80 2.97
3 - 2.77 2.91
4 - 2.74 2.86
5 - 2.71 2.82

Table 1. Reference stress distributions, aeg/0o, from HRR field and small and finite strain

boundary layer solutions.

8
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2.6 Engineering Applications of the J - Q Theory

For engineering applications two forms of the near tip plastic states are proposed:

rij = (0ij)HRR + QO'06ij, (2.17)

and

=ij = (O'ij)SSY;T=O + Qro 6i., (2.18)

where Q in Equations 2.17 and 2.18 are defined by Equations 2.6 and 2.8 respectively.

The values of the hoop stress of the HRR field for 1 < F < 5 is given in Table 1. The
other stress components can be found in Symington et al. [39). The hoop and mean stress
distributions of the small scale yielding field with T = 0 are given in Table 1 and Fig. 2.

More details are found in Refs 13 and 14.

The physical interpretation of Equations 2.17 and 2.18 is this: negative (positive) Q
values mean that the hydrostatic stress ahead of the crack is reduced (increased) by Qao
from the J-dominant stress state, or the standard small scale yielding stress state. This
interpretation is precise when IQ'I << 1.

As stated previously we recommend the use of Equation 2.18 in the J - Q fracture
methodology. However, the explicit representation in Equation 2.17 can facilitate analyses
leading to predictions of constraint effects on toughness as outlined in the section on a

cleavage toughness locus.

3. SMALL SCALE YIELDING

3.1 Q-T Relation

Within the modified boundary layer formulation, a strict one-to-one correspondence
exists between Q and T (see Refs 13 and 14). For a piecewise power-law hardening material,

the relationship takes the form

Q = F(T/oo; n), (3.1)

with an additional weak dependence on E/oo and v, where E is Young's modulus and v

is Poisson's ratio. Curves of Q vs. T/no for n = 3, 5, 10, 20 and oo are displayed in Fig.
3. The Q values in Fig. 2 and Table 2 are based upon the definition in Equation 2.8,
and were determined by small strain analyses, using E/o =- 500 and v = 0.3; essentially
identical results were obtained from finite strain analyses. It can be seen that Q increases
monotonically with T/ao. Also note that crack tip stress triaxiality can be significantly
lower than the reference state (the Q = 0 state) but cannot be elevated much above it.

The values Q and Q' are given in Table 2 keeping only two places beyond the decimal
point. Note that the largest value of Q' is less than 0.04. Thus Q is effectively constant

over the distance 1 < f < 5 for all MBL loadings.
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Figure 3. Variation of Q with T/ao for n = 3, 5, 10, 20 and oo.

T/ao -1.0 -0.75 -0.5 -0.25 0.0 0.5 1.0

n = 3, Q -0.78 -0.57 -0.37 -0.16 0.0 0.27 0.41
Q' -0.02 -0.01 0 r 0.0 0.0 -0.01 -0.04

n = 5, Q -0.98 -0.74 -0.46 -0.20 0.0 0.27 0.36
Q' -0.03 0.0 0.0 0.0 0.0 0.0 -0.02

n = 10, Q -1.23 -0.92 -0.54 -0.23 0.0 0.21 0.24
Q' -0.03 0.0 0.0 0.0 0.0 0.0 0.0

n = 20, Q -1.48 -1.06 -0.55 -0.19 0.0 0.17 0.20

Q' -0.02 0.02 0.0 0.0 0.0 0.0 0.0

n = oo, Q -1.84 -1.17 -0.60 -0.21 0.0 0.12 0.12
Q' 0.03 0.03 0.0 0.0 0.0 0.0 0.0

Table 2. Values of Q and Q' for several values of T/ao.
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n a1  a2 a 3

3 0.6438 -0.1864 -0.0448

5 0.7639 -0.3219 -0.0906

10 0.7594 -0.5221 0.0

20 0.7438 -0.6673 0.1078

oo 0.6567 -0.8820 0.3275

Table 3. Polynomial coefficents for Q - T relation

The curves in Fig. 3 can be closely approximated by

Q=a, (K +a2 (T)o +a3 ( T . (3.2)

The values of a,, a2 and a3, obtained by least squares fitting, are listed in Table 3 for

several n values. We have explored several other values of E/co and v and found that

the effect on the value of Q is negligible. The relations of Beteg6n and Hancock [21] and

Wang [25], correlating T with near-tip hoop stress, also can be rearranged into the form

of Equation 3.2.

To facilitate the use of Equation 3.2 in the analysis of finite width geometries we have

provided normalized values of the the stress intensity factor K, F(a/W), and the T-stress,

hT(a/IW) and E(a/W), for a number of crack specimens in Table 4. These are taken from

Sham [35,36] and Leevers and Radon [37]. The tabulated values allow us to calculate Q

in these geometries under contained yielding.

3.2 J - T and J - Q Approaches

Two approaches to specifying families of Mode I plane strain elastic-plastic crack tip

fields have been proposed. The first approach, suggested by Hancock and co-workers, uti-

lizes the elastic T-stress associated with the second term of Williams' expansion (Eq 2.1)

to correlate the elastic-plastic crack tip fields of varying stress triaxiality. The essence

of their proposal is this - the near-tip stress triaxiality Q can be estimated by T using

Equation 3.2 for loadings up to fully yielded conditions. We propose to quantify near tip

constraint using the J - Q theory which has a strong theoretical basis as discussed earlier.

Within the MBL formulation a description of near-tip states by J and Q is equivalent

to that phrased in terms of K and T since Q and T are related by Equation 3.1 and J and

K are related through

VK 2  (3.3)
E3

13



F(aM=K/aT~4Ira

a W CCP DECP TPBB
0.05 1.001 1.122 1.020
0.10 1.006 1.121 1.023
0.20 1.025 1.118 1.027
0.30 1.058 1.120 1.094
0.40 1.109 1.132 1.229
0.50 1.186 1.163 1.465
0.60 1.303 1.226 1.879
0.70 1.488 1.343 2.688
0.80 1.816 1.568 4.627
0.90 2.581 2.117 12.358

hT(a/W) =T/

a/W CCP (36] DECP [361 TPBB [351
0.05 -1.001 -0.526 -0.438
0.10 -1.006 -0.526 -0.369
0.20 -1.028 -0.529 -0.239
0.30 -1.071 -0.536 -0.099
0.40 -1.142 -0.548 0.075
0.50 -1.257 -0.558 0.318
0.60 -1.450 -0.568 0.712
0.70 -1.807 -0.580 1.487
0.80 -2.559 -0.590 3.636
0.90 -4.889 -0.599 15.167

E(a/W) =Tj /K

a/W CCP [361 DECP [361 TPBB1351
0.05 -1.000 -0.469 -0.430
0.10 -1.000 -0.469 -0.361
0.20 -1.004 -0.473 -0.233
0.30 -1.012 -0.479 -0.090
0.40 -1.029 -0.484 0.061
0.50 -1.059 -0.480 0.217
0.60 -1.113 -0.463 0.379
0.70 -1.214 -0.432 0.553
0.80 -1.409 -0.376 0.786
0.90 -1.894 -0.283 1.227

Table 4. Values of K, T and E for CCP, DEeP and TPBB geometries.
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under plane strain conditions. However, the equivalence of the two approaches does not

hold under fully yielded conditions. The J - Q fields can exist over the entire range of

plastic yielding and do not depend on the existence of the elastic field (Eq 2.1). By contrast,

T is undefined under fully yielded conditions. Furthermore, our numerical investigations,

to be presented in the section on finite width geometries, show that the J - T approach

overestimates the actual stress triaxiality for some geometries and underestimates it in

other cases so that there is not a consistent trend. Stated in another way, a T-stress

fracture methodology could be conservative for some geometries and non-conservative in

others-this suggests that such an approach may be impractical.

0.o00 0100

2a a a

- 2H 2H

2W 2W

c) pe

wA 3H

Figure 4. Fracture specimen geometries: (a) center-crack panel (b) double-edge crack panel

(c) three-point-bend bar.
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4. EVOLUTION OF Q IN FINITE WIDTH GEOMETRIES

Q-solutions have been obtained by finite element calculations for the crack geometries
shown in Fig. 4. The solutions reported here were obtained by analyses based on a
small strain J 2 flow theory. A typical mesh for the finite-width crack geometry has about
1000 four-node isoparametric elements. Readers are referred to Refs 13 and 14 for details
on finite element meshes, plasticity formulation and solution procedure. The Q values
presented in the subsequent sections are evaluated at r/(J/ao) = 2 unless stated otherwise.
J is evaluated using the domain integral technique as discussed in Ref 38.

4.1 Center-Cracked Panel (CCP)

The evolution of Q for n = 3 and 5 and n = 10 and 20 is shown in Figs 5 and 6,
respectively. Solutions are presented for the full range of crack length to width ratios:
0.05 < a/W < 0.8. In the figures, J is normalized by the crack length a when a/WI < 0.5
and by the remaining ligament b when a/W > 0.5. Observe tbat the stress triaxiality
decreases steadily with increasing J and approaches a steady-state slope at fully yielded
conditions.

Figure 7a and 7c show the effect of strain hardening on Q for a short crack and a deep
crack, respectively. For both geometries, the loss of stress triaxiality is greater in the lower

hardening materials.
The variation of Q with distance is shown in Fig. 7b and 7d. Here, Q is evaluated at

r/(J/ao) = 1, 2, 3 , 4 and 5. It can be seen that Q has only a slight dependence on r under
fully yielded conditions. For the range of loading shown in Fig. 7, IQ'I < 0.03 indicating
that the J and Q are accurate descriptors of the field over distances 1 < r/(J/ao) < 5.

In Fig. 7b and 7d we also provide a comparison between the actual stress triaxiality
and the prediction by the T-stress via Equation 3.2 The open circles in Fig. 7b and
7d are the T stress predictions and the solid lines are the actual near-tip triaxiality. At
low loads, Equation 3.2 predicts the evolution of near-tip stress triaxiality accurately.
However, at fully yielded conditions, the stress triaxiality is incorrectly predicted. In the
case of a/WV = 0.1, T underestimates the stress triaxiality by about 0.5ao. For a deep
crack a/W = 0.8, T overestimates the stress triaxiality by a similar amount.
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-3.0 -2.5 -2.0 -1.5 -1.0 -3.0 -2.5 -2.0 -1.5 -1.0log(Jl bo)) logjl(bao))

Figure 5. Center-cracked panel -evolution of Q with increasing J. a1W = 0.05, 0.1, 0.2,

0.3, 0.4 and 0.5, (a) n = 3 (b) n = 5; J normalized by crack length. a/W = 0.5,

0.6, 0.7 and 0.8, (c) n = 3 (d) n = 5; J normalized by remaining ligament.
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0.0 0.0(c) (d)

-0.5 8/W =0.8 -0A5 qW =0.8

Q -1.o 
Q -1.o

-isW8/0 0-1.5 -1.5 -o

n =10 n = 20

-2.0 .. .'. . ... -2.0 .... I.... , .... I....
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Figure 6. Center-cracked panel -- evolution of Q with increasing J. a1W = 0.05, 0.1, 0.2,

0.3, 0.4 and 0.5, (a) n = 10 (b) n = 20; J normalized by crack length. a/W = 0.5,

0.6, 0.7 and 0.8, (c) n = 3 (d) n = 5; J normalized by remaining ligament.
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Figure 7. Center-cracked panel. Effect of n on the evolution of Q; (a) short crack, (c) deep

crack. Q evaluated at r/(J/ao) = 1, 2, 3, 4 and 5 for n = 10; (b) short crack (d)

deep crack. The open circles are predictions based on the T-stress.
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4.2 Three-Point Bend Bar (TPBB)

Solutions for Q for the three-point bend bar are shown in Figs. 8 and 9 for 0.05 <

a/1 1' 0.S. The behavior of Q in shallow cracked specimens, a1W < 0.3, is similar to that

seen for the center-cracked-panel, that is, the loss of stress triaxiality occurs gradually.

When the crack is sufficiently deep, a/WV > 0.3, high stress triaxiality is maintained for

deformations characterized by J/(aao), or J/(bao), less than about 0.01. At higher J

levels, the global bending stress field impinges on the near-tip region, r - 2J/ao, causing

a rapid loss of stress triaxiality. This occurs at about J/(bao) = 0.02 corresponding to a

deformation level which is less than the ASTM limit for a valid JI, test (J/(boo) = 0.04).

Strain hardening effects on the evolution of Q are displayed in Fig. 10a, 10c and l0e.

It can be seen that the effect of strain hardening on Q is weak for deeply cracked bend

bars, a/W > 0.4. The actual Q values and the T-stress predictions are compared in Fig.

lob, 10d and 10f. It can be seen that T correctly estimates the stress triaxiality for the

short crack geometry (a/W = 0.1) but fails to predict the stress triaxiality under large

scale yielding in the long crack geometries.

The behavior of Q(f) over distances 1 < r/(J/ao) < 5 is shown in Fig. 11 for several

deformation levels as measured by J/aao or J/bao. For the short crack geometry, Q is

effectively independent of r over the range of loading considered. In the case of a/W = 0.4,

Q exhibits a dependence on r when J/aao > 0.03 (IQ'I -> 0.06); for the deepest crack

geometry this behavior occurs when J/bao > 0.017 (IQ'I -> 0.07). In both cases, the

variation of Q with r is linear.

4.3 Double-Edge Cracked Panel (DECP)

Q-solutions for the double-edge cracked panel are shown in Figs. 12 and 13 for 0.1 <

a/W < 0.9. Surprisingly, high stress triaxiality under fully yielded conditions is observed

only in the most deeply cracked geometry, a/W = 0.9. Also note that for a/W = 0.9 the

constraint falls slighty and then rises again when the ligament is fully yielded. For shallow

flaws, a/W < 0.5, Q is almost independent of relative crack size a/W.

Strain hardening effects on the evolution of Q are presented in Fig. 14a and 14c -

strain hardening effects are almost non-existent for a/W = 0.9. The comparison between

the stress triaxiality and the T-stress prediction for the double-edged cracked panel is

shown in Fig. 14b and 14d. The T-stress approach correctly predicts the stress triaxiality

for the deepest cracked geometry a/W = 0.9 (see Fig. 14d) but overestimates the stress

triaxiality for a/W = 0.5 (see Fig. 14b). Figure 15 shows the behavior of Q(f) over

distances 1 < r/(J/ao) < 5 for several deformation levels as measured by J/bao. It can be

seen that Q exhibits only slight dependence on r.
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Figure 8. Three-point bend bar -evolution of Q with increasing J. a/W = 0.05, 0.1 and

0.2, (a) n = 3 (b) n = 5. a/W = 0.3 and 0.4, (c) n = 3, (d) n = 5. a/W = 0.5,

0.6, 0.7 and 0.8, (e) n = 3 (f) n = 5.
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Figure 9. Three-point bend bar -evolution of Q with increasing J. a/W = 0.05, 0.1 and

0.2, (a) n = 10 (b) n = 20. a/W = 0.3 and 0.4, (c) n = 10 (d) n = 20. a/W = 0.5,

0.6, 0.7 and 0.8, (e) n = 10 (f) n = 20.
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Figure 10. Three-point bend bar. Effect of n on the evolution of Q; (a) short crack, (c)

intermediate crack, (e) deep crack. Comparison of Q values with predictions
based on the T-stress; (b) short crack, (d) intermediate crack, (f) deep crack.
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Figure 11. Three-point bend bar. Q evaluated at different positions ahead of crack tip for

several deformation levels as measured by J/Loo. (a) short crack, L = a, (b)

intermediate crack, L = a, (c) deep crack L = b.
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Figure 12. Double-edge cracked panel -evolution of Q with increasing J. a/W = 0.1, 0.2,
0.3, 0.4 and 0.5, (a) n = 3 (b) n = 5; J normalized by crack length. a/W = 0.5,

0.6, 0.7, 0.8, and 0.9, (c) n = 3 (d) n = 5; J normalized by remaining ligament.
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Figure 13. Double-edge cracked panel -evolution of Q with increasing J. a/W = 0.1, 0.2,

0.3, 0.4 and 0.5, (a) n = 10 (b) n = 20; J normalized by crack length. a/W = 0.5,

0.6, 0.7, 0.8, and 0.9, (c) n = 10 (d) n = 20; J normalized by remaining ligament
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Figure 14. Double-edge cracked panel. Effect of n on the evolution of Q; (a) intermediate

crack, (c) deep crack. Comparison of Q values with predictions based on the

T-stress; (b) intermediate crack, (d) deep crack.
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Figure 15. Double-edge cracked panel. Q evaluated at different positions ahead of crack tip

for several deformation levels as measured by J/lbo. (a) intermediate crack, (b)

deep crack.
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4.4 Use of J-Q solutions

The J - Q solutions provided in this and the previous section are determined from

a plane strain analysis. Therefore they are applicable to crack geometries which are suffi-

ciently thick relative to the crack size or uncracked ligament. In a typical fracture experi-

ment J is evaluated from the load displacement record and represents a thickness-average

value. The corresponding value of Q can then be obtained from the figures presented or,

in the case of well-contained yielding, from Equation 3.2 in conjunction with Table 4. If

the specimen conditions at fracture do not correspond closely enough to plane strain con-

ditions, the Q solutions presented here are not strictly valid. The procedure may still be

applied if we are comparing specimens of similiar thicknesses. However, if test data from

specimens of widely different thicknesses are compared then 3-D solutions for Q should be

used. This aspect is discussed in Refs 15 and 40 where a pointwise value of Q is used to

quantify stress triaxiality near a three-dimensional crack front.

5. CLEAVAGE TOUGHNESS LOCUS

Kirk et al. [30] have measured cleavage fracture toughness for A515 steels at room

temperature over a broad range of crack-tip constraints. They tested edge-cracked bend

bars with thicknesses B = 10, 25.4 and 50.8 mm and various crack length to width ratios.

The measured toughness data is plotted against Q in Fig. 16.

Constraint effects on fracture toughness can be predicted by using the J - Q fields in

conjunction with a fracture criterion based on the attainment of a critical stress, a22 = ac,

at a characteristic microstructural distance, r = r, (Ritchie et al. [34]). Within the J - Q

annulus the normal stress ahead of the crack is given by Equation 2.12 or more accurately

by Equation 2.13. In the interest of simplicity, we work with the approximate form in

Equation 2.12. Suppose that r, is within the J - Q annulus. Now impose the RKR

fracture criterion to get

ac j c 1/(n+1)
a =ae0a'0Irc O22(0=0)+ Q. (5.1)

Therefore, we can solve for Jc as a function of Q for selected values of ac and r,. Now

designate the toughness value at Q = 0 as J0 and use Equation 5.1 to arrive at

Sn+ (5.2)
a~c

Observe that the ratio, J/Jo, does not depend on rc. The predicted variation of Jc with

Q, for ac = 3.5ao, Jo = 40 kPa.m and n = 5, is indicated by the dashed line in Fig.

29



16. It can be seen that the predicted toughness curve correctly captures the trend of the

experimental data.

Sumpter and Forbes [28] have conducted extensive testing on mild steel at -50 where

fracure occurs by cleavage with no prior stable crack growth. Their test program includes

shallow and deeply cracked bend specimens and moderate to deeply cracked center-cracked
panels. Their results show that the data from fully yielded center-cracked specimens

are not consistent with a J - T toughness locus constructed from the bend specimens;

this is not unexpected in light of our observations that the T-stress does not correctly

predict crack-tip constraint under fully yielded conditions. In contrast, with allowance for

experimental scatter, the data from both center-cracked and bend specimens form a single

J - Q toughness locus.

300.0 ,
Predictions by - ---

250.0 J-Q Theory 0 ,
°I

S200.0 o
0 / +
0 00

150.0 .-
S~0 o

100.0 a 0 0

00- ÷ Cleavage Data

Kirk et al. (1991)

0.0 1 , , ! . . . . . . . . . . . . . I . .

0.25 0.00 -0.25 -0.50 -0.75 -1.00 -1.25 -1.50

Q

Figure 16. Cleavage toughness data for ASTM A515 Grade 70 steels tested at 20 0 C using
edge-cracked bend bars; (Kirk et al., [30]). + for thickness B=10 mm, 0 for

B=25.4 mm, A for B=50.8 mm. Toughness curve predicted by J - Q theory is

indicated by the dashed line.
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6. J-Q METHODOLOGY

The competition between fracture by cleavage and ductile tearing controls the fracture

resistance of ferritic steels in the ductile-to-brittle transition region. It is well accepted that

cleavage fracture is controlled by a critical hoop stress (opening stress) at a microstruc-

turally significant distance (Refs 29, 34 and 40). There is also general agreeement that the

mean stress drives cavity growth in ductile tearing (Refs 11 and 24). Since Q quantifies

both the hoop and the mean stress relative to a reference stress state it provides a common
scale to interpret brittle and ductile fracture, therefore allowing both failure modes to be

incorporated in a single toughness locus.
Suppose test conditions are such that ductile and brittle mechanisms are operative.

Fracture by cleavage generally occurs at high crack tip constraint while ductile tearing

develops at low constraint; this is illustrated by the two distinct segments to the toughness
loci shown in Fig. 17a. Since measured toughness values generally exhibit scatter, both the

lower and higher toughness loci are indicated which define bounds for brittle and ductile

failure. Toughness values over the full range of crack tip constraints can be measured

by using the test geometries depicted in Fig. 17a. As an example, deeply cracked bend
specimens generate high crack tip stress triaxiality, :.e. Q ,: 0. They produce driving force

curves which rise steeply and therefore intersect the toughness loci within a well-defined,

narrow zone of the J - Q diagram. In contrast, center cracked panels and single edge

crack panels loaded in tension are low constraint crack geometries. They produce driving

force curves which rise with shallower slopes and thus intersect the toughness loci over a

broad zone in the J - Q diagram. The shallow driving force curves of low constraint crack

geometry can explain the considerable scatter in cleavage values, J,, observed in testing

shallow crack specimens loaded in tension.

Utilization of the toughness locus in fracture assessments is illustrated in Fig. 17b.

Suppose that the material's fracture resistance under service conditions is characterized
by the indicated cleavage-ductile failure band. The driving force curve for a structure with

high crack-tip constraint, structure A, rises rapidly in the J - Q space so that cleavage

fracture occurs when the driving force curve intersects the failure locus. In contrast, a low

constraint geometry, structure B, induces a gradually rising driving force curve so that
ductile tearing is the likely event at accidental overload.

31



Jcritical Upper-Bound (a)

Ductile
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0 -Q
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i• /" UDuctile
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Figure 17. Illustration of J - Q methodology. (a) Laboratory testing of specimens of varying

constraints to measure the material's fracture resistance. Circles indicate antic-

ipated scatter in the measured cleavage toughness data which define the upper

and lower bounds. (b) Evaluation of structures using measured toughness locus

and predicted J - Q load path for two structural geometries.
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